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Part I. Original Consense Project 

Introduction  
PARC dedicated a lot of effort on data collection experiments. In SITEX fild experiment in 

August 2000, PARC collected large volumes of acoustic data and made the data available to the 

SensIT community. These data later became test data sets for various teams. PARC built and 
maintained testbeds for data collection. For example, PARC constructed the SensIT West Coast 
testbed, containing about twenty Sensoria nodes, communicating with each other via wireless 

802.11b. The testbed was constructed outdoors on PARC site. It had been used to support data 

collection, experiments, and debugging tasks by various teams, such as ISI/USC, UCLA, Fantastic 

Data, and PARC.  

• The testbed supported data collection experiments by UCLA (Prof. Kung Yao’s team) on 
beamforming.   

• The testbed supported data collection experiments by ISI/USC (Prof. John Heidemann). 
PARC provided help on debugging of network diffusion routing algorithm and 
performance analysis.   

• In PARC’s target tracking experiment, the testbed was successfully used for detection 
and tracking of moving targets at real time with good accuracy. The testbed has been 
documented in [Liu-IPSN 2003].   

 
In addition, PARC has constructed an indoor testbed comprising of over 100 Berkeley motes. The 
testbed has been used successfully for tracking local phenomena, as well as large scale 
phenomena such as the boundary of a shadow [Liu-WirelessComm 2003]. The emphasis of this 
research is to force large scale distribution, i.e., to disseminate complicated sensing and 
processing tasks to sensor nodes with limited abilities.  
 
PARC has developed several simulators for distributed tracking and hypothesis management, 
including the following:  

• A centralized simulator simulating tracking of single moving vehicle. The simulator is 
tested using data collected in the SITEX02 29’Palms field experiment. The data was 
collected from over 30 Sensoria nodes, placed along cross roads in the field.  The 
collected data has been post-processed and successfully used to reconstruct the tracking 
of moving military vehicles. The simulator and the algorithm have been documented in 
our EuraSip paper [Liu-EuraSip 2003].  

• A simulator simulating distributed operation of sensor nodes, capable of detecting, 
classification, and tracking of multiple interacting targets. This involves complex 
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hypothesis management regarding target identities. The simulator has been documented 
in [Liu-IPSN 2004].  

• A simulator simulating a network of motes, each node with very limited computation and 
communication capability. Variations of this simulator have been used for tracking global 
phenomenon such as counting the number of signal sources [Fang-MobiHoc 2003], or for 
local phenomena such as tracking the contour (SLANT).   

 
PARC has collaborated with UCLA on beamforming algorithms for microphone arrays, with 
UCLA/USC/ISI on network diffusion, with BBN and BAE in SITEX experiments, and with the 
general sensor network community in organizing workshops. PARC has organized two 
workshops on sensor networks.  

• The first workshop was held on January 2001, focusing on collaborative signal 
processing.   

• The second workshop, Information Processing in Sensor Networks (IPSN’03) was held 
on April 2003. It covers a broader spectrum, including collaborative information and 
signal processing, networking, programming, and various applications. It has attracted 
high-quality papers and received good attendance from academia, industry and 
government. 

 

(1.0) Distributed multi-level feature analysis  

In support of the thread Distributed multi-level feature analysis, the original SOW statement 
was: 

1.0 Distributed multi-level feature analysis 

1.1 Develop a distributed feature analysis algorithm (e.g. distributed PCA). 

1.2 Develop a target localization algorithm (e.g. an incremental least-squares 

algorithm). 

1.3 Develop a multi-sensor data fusion algorithm to combine either multiple sensor 

filter data streams, or multiple detection filter data streams, or both. 

1.4 Test the feature analysis algorithm in the simulator using a signal data set. 

1.5 Test the localization algorithm in the simulator using a point target position data 

set. 

1.6 Test the multi-sensor fusion algorithm in the simulator using multi-channel sensor 

data set. 

1.7 Conduct evaluations and document the scalability and performance effects of 

scaling of the overall feature analysis algorithm using the metrics in paragraph 

3.0. 

1.8 Investigate other approaches to feature analysis and multi-sensor fusion, 

developing tools and tests for analysis and comparison of approaches. 

1.9 Demonstrate the feature analysis algorithm in the simulator using an experimental 

data set. 

1.10 Develop a distributed target localization algorithm (e.g. an incremental least 

squares algorithm) that forms local estimates of target parameters within a sensor 

net and combines only those local estimates that can best improve the overall 

accuracy of localization. 
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PARC has developed a distributed algorithm for feature analysis. It computes principal 
components from stationary data samples using a stochastic gradient algorithm called Oja 
algorithm. The computation is incremental and any-time. More generally, PARC has developed 
methods for extracting information from sensory data. For example, for single target tracking, we 
have developed a sequential Bayesian filtering approach to track target locations [Liu-EuraSip 
2003] based on multi-modal sensory data.   For multi-target tracking, the complex tracking 
problem is separated into inter-leaved simpler problems of position tracking [Liu-IPSN 2004] and 
identity management [Shin-IPSN 2003]. Hypotheses regarding target identity are managed via an 
efficient data representation (identity belief matrix) and efficient sensor collaboration [Liu-
PervComp 2003]. All the modules mentioned above have been tested and demonstrated on the 
PARC testbed (e.g., [Liu-IPSN03]) or in simulations (e.g., [Liu-IPSN04]).  
 
PARC has developed an incremental least-squares algorithm for localization. The algorithm has 
been used for tracking of stationary target as well as moving targets. Coupled with proper error 
control method, it has also been used for node localization, where within a sensor network, just a 
few anchor nodes have known locations. The algorithm bootstraps to localize nodes with 
unknown locations. The method is reported in [Zhao-MobiHoc 2003]. Variations of the 
incremental least-squares method have been tested in simulations with good localization 
accuracy. The method is computationally inexpensive and fast.  
 
PARC has developed several sensor fusion methods. The aforementioned incremental least 
squares method is one.  A more elaborate method PARC has developed is a probabilistic 
sequential Bayesian filtering method for tracking moving targets. The Bayesian filtering method 
can combine multi-modal sensor data. For example, [Chu-IJHPCA 2001] and [Liu-EuraSip 2003] 
fuse range data from amplitude sensors with direction-of-arrival data from microphone array 
sensors.  
 
The sensor information extraction methods and fusion methods have all been tested. For example, 
the incremental least squares method is tested successfully in node localization experiments. The 
probabilistic fusion method has been tested in simulations (see for example, [Chu-IJHPCA 2001] 
and [Zhao-SPM 2002]), using post-processed real data [Liu-EuraSip 2003], as well as real-time in 
PARC testbed [Liu-IPSN 2003].  
 
The incremental least-squares method and the probabilistic sequential Bayesian filtering method 
are scalable to a large number of sensor nodes. For example, the incremental least-square method 
has been applied for node localization within a network consisting of over 100 nodes. We have 
also analyzed the scalability issues in probabilistic tracking, by comparing it with various 
methods, especially conventional centralized data fusion, and analyze the respective computation, 
communication, and power costs [Liu-EuraSip 2003].  
 
Apart from these, PARC has explored the issue of sensor tasking and control, which is a very 
important problem in resource constrained sensor networks. PARC has designed various forms of 
IDSQ (information-driven sensor querying) criteria in which sensing, communication, 
computation, and energy resources are spent on the most informative sensors. Tasking has been 
described in our publications [Chu-IJHPCA 2001], [Zhao-SPM 2002], [Liu-EuraSip 2003].  Due 
to the local nature of physical phenomena, the sensor tasking strategies often take advantage of 
local sensing. Estimates of target locations are formed based on local sensor data only.  
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(2.0) Distributed hypothesis management 

In support of the thread Distributed hypothesis management, the original SOW statement was:  

2.0 Distributed hypothesis management.   

2.1 Develop a data representation for organizing data from multiple sensor nodes into 

a form useful for verifying higher-level hypotheses (i.e. virtual sensors.) 

2.2 Develop a distributed data representation for hierarchies of hypotheses. 

2.3 Develop a distributed hypothesis management algorithm, consisting of hypothesis 

formation and validation and distributed data structures (e.g. dKDS) to maintain a 

set of distributed facts and hypotheses. 

2.4 Evaluate the scalability and performance effects of scaling of the hypothesis 

management algorithm using the metrics in paragraph 3.0. 

2.5 Test the hypothesis management algorithm in the simulator, using a simulated data 

set. 

2.6 Demonstrate and document the hypothesis management algorithm in the simulator, 

using an experimental data set. 

2.7 Explore other possibilities for distributed hypothesis management and data 

representations  

2.8 and develop tools for analysis and comparison of approaches. 

2.9 Initiate development of a distributed data representation (e.g. virtual sensors) for 

maintaining that relations between signals and hypotheses in a sensor net. 

Combined with the distributed localization algorithm developed in paragraph 1.10, 

and dKDS data structure developed in paragraph 2.3 to support the dynamic 

management of formation, maintenance, and validation of multiple hypotheses.  

 
PARC has developed several hypothesis management methods. One is relational tracking. The 
relation among objects are represented and stored in distributed sensor nodes. The hypotheses 
regarding object relations are managed dynamically [Guibas-SPM 2002].  
 
Another important piece on hypothesis management is the tracking of multiple interacting targets. 
PARC has developed an efficient hypothesis management method for multi-target tracking. In 
particular, the method tracks ambiguity of track identity (which track corresponds to which 
target) when targets cross each other’s path.  Hypotheses are formed and represented as identity 
belief states; the representation is distributed over geographically spread sensors. Sensors 
performing classification to sort out identity ambiguity can be considered as virtual sensors. 
Ambiguity regarding track identity is actively adjusted when these virtual sensors gather 
classification evidence. PARC has designed a probabilistic method to dynamically maintain the 
identity consistency across sensors. Technical details regarding identity management are 
discussed in [Shin-IPSN 2003].  
 
Compared to traditional hypothesis management schemes such as JPDA or MHT, our data 
representation and management scheme allow temporal inconsistency, and as a result, the scheme 
requires far less computation complexity and communication expense, and is more scalable. The 
detailed comparison between our hypothesis management method and more conventional data 
association methods are provided in [Shin-IPSN 2003].  
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The distributed identity management scheme has been implemented and validated in simulations. 
The simulation using simulated identity data is described in [Shin-IPSN03].  
 

The identity management method mentioned above has been combined with the location 
tracking scheme mentioned in thread 1.0 to form a complete and coherent multi-target 
tracking system.  Overview of the multi-target tracking information architecture is 
described in [Chu-InfoFusion 2003][Chu-Allerton 2003], and the data representation 
issues are described in [Liu-IPSN 2004].  Implementation-wise, the identity management 
scheme is supported by groups of collaborating sensors. The group collaboration scheme 
is described in the next thread.  Hypotheses regarding identity and position have been 
formed, validated, or updated. The system has been tested successfully in simulations 
[Liu-IPSN 2004].  
 

(3.0) Scaling metrics for distributed sensors 

In support of the thread Scaling metrics for distributed sensors, the original SOW statement 
was: 

3.0 Scaling metrics for distributed sensors.  (See CDRL, A006) 

3.1 Develop figures of merit for the scalability of the system (e.g., the effects of scaling 

on system performance or the effects of scaling on system resource usage). 

3.2 Evaluate metrics for the algorithms and architecture used in the full experimental 

system described by the SenseIT community. 

PARC has provided comparison for performance/scalability tradeoff. For example, [Liu-EuraSip 
2003] compares different tracking system (IDSQ or centralized tracking) in terms of their 
tracking performance and scalability metrics such as communication and computation cost. For 
hypotheses management, PARC has provided comparison of distributed identity management and 
traditional MHT and JPDA methods in [Shin-IPSN 2003].  

In addition, to build sensor network systems with good scalability, PARC has designed various 
models of collaboration. In these models, sensors with information about a certain phenomenon 
are organized into a collaboration group. This group-based architecture enjoys great scalability by 
restricting sensing, communication, and computation to only relevant sensors and freeing non-
relevant sensors for resource conservation and multi-tasking. We have designed several 
collaboration models, such as geometrically-constrained group, N-hop neighborhood group, 
publish-subscribe group, and acquaintance group [Liu-PervComp 2003]. Some of these groups 
are static; others are dynamically evolving, capturing the spatial-temporal diversity in sensing. 
These collaboration models encapsulate the common data aggregation patterns in sensor network 
applications. From the programming point of view, the collaboration models provide useful 
abstraction from sensor network specifics and allow application programmers to focus on how to 
gather information from sensors and how the information should be processed.    
 
The design of collaboration models is motivated by the tradeoff between system scalability and 
performance. The design principles have been described in [Liu-PervComp 2003]. The paper 
shows how a group should be formed and dynamically maintained over time, and how it can 
serve as building block of large scale scalable sensor network systems. The collaboration models 
have been successfully implemented in multi-target tracking simulations with around 100 sensor 
nodes. We have also mapped out detailed communication protocols to form geometrically-
constrained group for target detection/track initiation and maintenance [Liu-IPSN 2003]. This has 
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been implemented in real-time outdoor tracking experiments on PARC service road. We have also 
designed a protocol to maintain the communication link between members of acquaintance 
groups [Fang-IPSN 2004] using a fishbone routing structure.  
 
 

(4.0) Other efforts on collaborative sensing  

 

PARC has put substantial effort into building large scale networks consisting of sensor nodes 
with limited computation, and communication abilities, such as the Berkeley motes. The 
operation of these networks is quite different from the sensor network consisting of PC-
equivalent nodes. These networks force distributed processing and have much higher requirement 
on scalability and resource management. We have developed a programming model [Cheong-
ASAC 2003] for motes to enhance component reusability and facilitate programming. We have 
also developed efficient data representation and processing algorithms based on simple 
computation implementable on the motes. This is called feather-weight sensing in [Zhao-
ProcIEEE 2003]. Some applications such as shadow tracking [Liu-WirelessComm 2003] have 
been implemented on the mote testbed. Others such as peak counting [Fang-MobiHoc 2003] have 
been tested in simulations.  
 
Other related topics that PARC has pursued include the following:  

• Information-directed routing, related work is described in [Liu-ICASSP 2003b] [Liu-
WSNA 2003].  

• Embeded software for sensing and control, related work is described in [Zhao-ProcIEEE 
2002][Liu-CSM 2003].  

• Sensor network capability limits are investigated, described in [Liu-ICASSP 2003]. 
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Part II. Seedling Extensions 

Introduction 
 
This part of the final report discusses the original SOW items of the first and second extensions.  
Due to the overlap of many of the SOW items in the two extensions, primarily due to the fact that 
the SOW items in the second extension were intended to be extensions of the items in the first 
SOW, we will report on the related SOW items in conjunction.  After each SOW item (shown in 
italics), we print a letter (in bold face) indicating the section which describes the completion of 
the SOW item. 
 
As reported in the SOW of the original extension, we have the following items. 
 
1. Develop an architecture for task-driven information collection and algorithms for 

incremental information update and optimal allocation of sensing and communication 

resources. (See Section A) 

 

2. Develop a model of normalcy and threats and associated algorithms for detecting and 

classifying threats. (See Section B) 

 

3. Develop a set of metrics for evaluating the performance of the distributed attention 

architecture.  Some of the metrics will be task specific, such as false alarm/miss rate and 

response time.  Detection and tracking capacity of such networks will be characterized as a 

function of sensor density, number of targets, task priorities, sensor and network failure 

probabilities. (See Section F) 

 

4. Develop a simulator to support the development of the architecture and algorithms, and 

validate them for a multi-target sensing problem. (See Section E) 

 

5. Build a 20-node testbed of a sensor network, to evaluate different sensing modalities such as 

video and acoustic and their suitability for a larger testbed for the DARPA program at a later 

stage.  The testbed will be based on off-the-shelf programmable PC104-class processors 

(e.g., Openbrick node) with USB based camera/sensor ports and linux OS for ease of 

programming and distribution to the larger research and development community. (See 

Section E) 

 

6. Perform data collection experiments on the testbed hardware and use the data to validate the 

distributed attention architecture.  The testbed will also be used to characterize uncertainties 

in sensing and threat models and their effects on the sensor network capacity and 

performances. (See Section G) 

 

7. Deliver a final report to DARPA on the distributed attention architecture. (See Section I) 

 
As reported in the SOW of the second extension, we have the following items.  
 
1. Define an overall system architecture, comprising sensing, inference, learning, self-

awareness, resource allocation and communication in a distributed setting. (See Section A) 

 

2. Add a Cognitive Layer to the layered inference architecture, reasoning about higher-level 

abstract models of the behaviors that were identified by the pre-attentive layer and tracked by 
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the attentive layer. This includes a capability for the cognitive level to steer the sensing of the 

attentive and/or pre-attentive layer. We will compare this architecture to previous work in the 

field. (See Section C) 

 

3. Build a framework for network self-awareness, comprising a more detailed task resource use 

model and a subsystem allowing nodes to detect and adjust to the sensing capabilities, 

processing power and/or network connectivity of their local neighborhood. Modify the 

resource allocation algorithms to support dynamic adaptation to these parameters. (See 

Section D) 

 

4. Enhance the testbed to display the vehicle behaviors needed for cognitive processing and to 

support time-varying sensing capabilities and/or network topology as needed to demonstrate 

self-awareness. (See Section E) 

 

5. Produce a document extending the benchmark scenarios and metrics to support the new 

capabilities described above. (See Section F) 

 

6. Host a workshop at PARC to solicit input on the distributed attention architecture and 

generate interest in the underlying research ideas. Produce a whitepaper exploring the 

research issues for a DARPA program in this space. (See Section H) 

 

7. Deliver a final report on the distributed attention architecture to DARPA. (See Section I) 

 

(6.0) Overall system architecture 

 
The overall system architecture implemented in the testbed developed by PARC is described in 
Appendix I, which describes the overall architecture, design decisions, and distributed 
implementation of the whole system.  An initial design of the architecture was also described in 
[Chu-IDSS2004] which we refer to serve as a summary along with references to related work.  
What follows is a summary of the generalization of the actual system architecture which is 
described in greater detail in Report A011. 
 
From a holistic view, the distributed attention architecture makes a separation between the 
application side, which is responsible for the application-specific inference, sensemaking, and 
learning capabilities, from the system side, which is responsible for the physical sensing, 
networking, and resource allocation capabilities, as shown in the Figure 1. 
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Figure 1.  System architecture 

 
The interface between these two parts is a language which can summarize the necessary 
parameters and requirements needed for the two sides to work together as a whole.  From the 
application side to the system side, the application can specify requests for certain kinds of data 
which would be useful to its sensemaking tasks.  By prioritizing these requests, the resource 
allocator on the system side can make an intelligent task-to-resource allocation decision, and 
schedule the appropriate sensors to provide the desired data.  From the system side to the 
application side, the system can provide data tagged with attributes (like the time, location, and 
type of data) so that the sensemaking tasks have enough information to begin to make sense of 
the raw data.  Thus, from the application side’s point of view, the system is a data producing 
black box which takes requests for data as input and outputs data to the application side.  
 
The application side maintains an inference structure, which we call a layered inference 
architecture.  The layered inference architecture is structured so that the sensemaking algorithms 
are broken up into modules with the dependencies and interaction between the modules explicitly 
defined.  In fact, a generic form of an inference module is proposed with parameters to adjust the 
behavior of the module and other modules connected to it.  Such a decomposition is useful for 
two reasons.  First, since the sensor network is a distributed system, the inference modules can be 
distributed throughout the network. The particular choice of distribution of these inference 
modules for processing on sensor nodes can be made in real-time so that processing and 
communication can be optimized to the particular sensor network resources available.  This 
flexibility enables network self awareness since the particular choice of distributing inference 
modules can be adjusted when nodes and links fail.  Secondly, we can change the behavior of 
how the sensemaking algorithms behave on-line by tweaking the parameters of the modules.  The 
particular choice of tweaking parameters affects what sensemaking algorithms will be enabled, 
and hence, what sensing resources are needed.  Thus, these adjustments to the parameters are how 
we focus attention only on objects of interest.  Learning algorithms can be incorporated to change 
the behavior of the algorithms and how they are distributed on the sensor network, which is a 
form of self awareness from the sensemaking perspective. 
 
The system side maintains knowledge of the network, the sensing resources available, and 
connectivity.  This information can be used to maintain a network self awareness so that as new 
nodes enter or old nodes depart from the network, resource allocation can be adjusted to make use 
of only the available resources in real time.  Furthermore, routing to disseminate data to the 
appropriate nodes, as dictated by the placement of inference modules, can be adjusted as the need 
arises. 
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(7.0) Normalcy 

 
PARC has developed models of normalcy which are relevant at different layers of the inference 
stack in the distributed attention architecture.  [Normalcy-2004] is a slide deck which outlines 
what the relevance of normalcy is on distributed attention, the approaches we consider to define 
normalcy, how normalcy is incorporated into the inference architecture, and some scenarios of 
how normalcy and inference will work together to focus attention on a subset of abnormal 
behaviors. 
 

(8.0) Cognitive layer of processing 

 
PARC has worked on the problem of detecting the source of disturbance among a group of 
interacting objects, which is an example of a higher-level behavior to be added to the cognitive 
layer of the layered inference architecture.  In particular, for scenarios where there are lots of 
independently moving objects like people in busy city streets or vehicles on highways, PARC has 
considered the problem of identifying “bully” objects based on the motion of several interacting 
objects.  The assumption is that a bully object moves along its desired path with complete 
disregard of other objects near it even if a collision is imminent, whereas non-bully objects are 
willing to stray away from their desired path in order to avoid collisions.  The result is that bully 
objects tend to push non-bully objects out of the way causing them to stray from their desired 
path. 
 
Such a source of disturbance has ramifications to the pre-attentive and attentive layers of 
processing.  The pre-attentive layer is the first line of filtering for abnormal events in this 
distributed system.  In the earlier distributed attention system without the cognitive layer, the pre-
attentive layer tagged objects with statistically rare velocities as abnormal, based on the history of 
position/velocity detections of objects.  The attentive layer then tracks these pre-attentively 
abnormal objects.  In order to incorporate bully detection at the cognitive layer of processing, the 
cognitive layer must adjust the action of the pre-attentive and attentive layers of processing.  
First, a bully may not act abnormal in the “pre-attentive” sense because it could have normal 
position and velocity detections over time.  On the other hand, the non-bullies are pushed out of 
the way of the bully so that they may exhibit abnormal velocities in the “pre-attentive” sense.  
Hence, in order to minimize the amount of unnecessary computation, once a bully is identified, 
the cognitive layer should alter the notion of what it means to be abnormal in the “pre-attentive” 
sense for objects near the bully.  Second, since the pre-attentive layer may not tag the actual bully 
as being abnormal in the “pre-attentive” sense, there must be a way to instantiate tracks so that a 
bully can be tracked.  Since an object which is pushed out of the way by a bully will most likely 
exhibit abnormality in the “pre-attentive” sense and, hence, a track instantiated for that object, the 
idea is for the cognitive layer to detect when a track looks like it is being pushed.  Then, all other 
objects in the vicinity are hypothesized to be possible bullies, thus instantiating tracks for possible 
bullies.  At this point, the cognitive layer can reason about the behavior of these tracks and 
declare them bullies or non-bullies. 
 
Layered inference architectures, which work with multiple representations of data that are 
processed interactively, have long been proposed within the computer vision community, 
although little work has been explicitly published in the literature.  The notions of top-down and 

bottom-up processing have long been considered complementary processes which if, working 
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together, have been hypothesized to help manage the complexity of processing in recognition 
problems.  In particular, [Ullman-1997] suggested a machinery called counterstreams which 
combined top-down and bottom-up processes to work in harmony.  Hierarchical control 
[Vachtsevanos-1998] has been used in practice which has promoted modularized design of 
complex control systems.  Component-based software architectures [CompSoft-1998], [Szperski-
1998] could enable extensible and flexible designs for future evolution.  Our inference stack part 
of the distributed attention architecture uses these ideas to build the representations and 
algorithms in the pre-attentive, attentive, and cognitive layers.  The primary difference in our 
inference stack lies in the fact that our system is distributed so that the representations and 
processes within each layer must themselves be modularized to promote distribution of the 
representations onto a sensor network.  Hence, the generic modules to be composed together in 
the inference stack, as described in Report A011 for the purpose of maintaining a distributed 
representation on a distributed system are novel. 
 
The resource allocation part can be related to the scheduling and allocation tasks of any modern 
operating system on computers.  The main difference again comes from the fact that we are 
concerned with a distributed system so that scheduling and resource allocation must have a 
distributed implementation.  Furthermore, the priorities of allocating certain tasks changes with 
the state of phenomenon in the environment rather than the usual fixed priorities of tasks in a 
traditional operating system.  This dynamism is a particular feature of sensemaking algorithms on 
sensor networks since the tasks that are executed depends directly on the occurrence of 
phenomena in the environment. 
 

(9.0) Framework for network self-awareness 

 
Our framework for incorporating network self-awareness has manifested itself in a software 
architecture called the Janus architecture.  See the slide deck [Janus-2004] for more details on the 
conceptual view of the architecture and the underlying services.  The Janus architecture provides 
an abstraction of the sensor network so that application code, in the form of software agents, 
implementing inference algorithms need only register for data by specifying the desired modality 
of the data regardless of the type of sensor hardware or whether the sensor is on a remote node or 
the local node.  By creating this separation between sensing resources providing data from 
application software agents consuming data through the indirection of a data description 
language, the functionality needed for network self-awareness can be separated from the code in 
the application agents. 
 
The Janus services include several modules which are responsible for different functions.  The 
two modules which support network self-awareness are the “Neighborhood” and the “Negotiator” 
modules.  The “Neighborhood” is responsible for keeping the local database up to date of all 
hosts within a local neighborhood.  All algorithms for detecting when hosts die or when new 
hosts enter the network are incorporated into this module, and this information about the local 
neighborhood of hosts is stored in the local database.  Thus, the “Neighborhood” module is the 
subsystem which allows nodes to detect and maintain awareness about the dynamic connectivity 
and availability of nodes within a local neighborhood.  The second aspect of network self-
awareness is the ability for the application agents to adapt to these dynamic network conditions.  
The “Negotiator” module serves as the intermediary between the application agent algorithms and 
the dynamic network resources so that algorithms for allocating sensing resources to sensing 
tasks reside here.  The effect of this intermediary is that the application agent code need only 
request for data by specifying the type and attributes of the data without knowledge of the 
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specific sensors in the network.  The “Negotiator” can then look in the local database to see what 
sensors are available to provide the requested data and schedule the sensor to provide the 
requested data.  Since the “Neighborhood” maintains information about the local neighborhood of 
hosts, the “Negotiator” is in real-time allocating resources for tasks according to the current state 
of the network.  Furthermore, this separation of functionality into the “Neighborhood” and the 
“Negotiator” allows network self-awareness to be implemented in a modular fashion. 
 

(10.0) Testbed and Simulator 

 

 
Figure 2.  First generation testbed 

 
PARC’s first generation testbed is shown in Figure 2.  It 

It served to demonstrate an exploratory prototype of a two-layered inference architecture with 

resource allocation.  Two types of vehicles are present: distractors, represented by line-tracking 
robots which automatically follow tracks drawn on the testbed surface, and vehicles of interest, 
represented by radio controlled tanks. To simplify image processing, vehicles were marked with 
either a disk of a single color (giving 4 appearance models) or a disk surrounded by a ring of a 
different color (16 appearance models). No a priori knowledge of the colors assigned to 
distractors or vehicles of interest is used by the system. 
 
Above and around the testbed, six sensor nodes were installed.  The sensor nodes are OpenBricks, 
300 MHz x86-class tiny PCs with TrackerPod pan-tilt cameras (PTCs) mounted on each. At each 
timestep, each PTC points at the center of one of 4 neighboring regions on the testbed, with 0-2 
regions overlapping among each pair of neighboring nodes. 
 
The size of the testbed was determined during the summer of 2003, when a smaller group of three 
trackerpod cameras were mounted on vertical posts on the testbed to track several battery-
operated line-tracker vehicles. There were a few contradicting requirements we wanted the 
testbed to meet: First, it should be as large as possible to accommodate as many cameras as 
possible in future expansions. Second, practically it should fit inside the room which we had 
previously used as the anechoic chamber for the SensIT acoustic tracking project, and should 
leave adequate walking space around the testbed. Third, the testbed should be easily managed by 
one person, and occasionally by two.  
 
To provide the option of erecting cameras in the middle of the testbed, the testbed was designed 
to allow cables to run underneath. Access to the space underneath the testbed was necessary, so 
fibre pegged boards were chosen. In addition, spacers made from 0.75 inch high medium density 
compressed particle boards were attached from underneath and secured by wood screws driven 
through the pegged holes. The spacers were generally spaced 1 foot apart and that was sufficient 
to support the weight of a person walking on top of the board. Nevertheless we eventually learned 



 16 

that mounting a camera base in the middle of the testbed still involved too much effort of opening 
a big hole and fitting a relatively large spacer board to stabilize the camera as it was motorized to 
move. Besides, it would be inflexible to move the camera base somewhere else should the need 
arise. Hence we finally designed a racetrack vehicle path and opted to mount the camera bases 
around the perimeter and cantilevered the camera a foot or so into the testbed.  
 
The final size of the testbed was also influenced by the material sizes that we could acquire. The 
pegged boards were bought in standardized size of 8 feet X 4 feet, with holes 0.25 inch in 
diameter and spaced 1 inch apart each other in a rectangular grid. We finally decided that the 
testbed be made of two standardized boards, each cut to 6 feet 1.5 inches X 4 feet  and combined 
on the long side. Four 4-inch high boards were screwed around the perimeter as a frame and that 
took in 0.75 inch from each edge, hence the final working area of the testbed was measured 94.5 
inches X 6 feet. 
 
Each of the trackerpods from Eagletron Trackercam had a Logitech Quickcam Pro 4000 webcam 
mounted on it. The robotic tripod could pan 160 degrees and tilt 110 degrees at a speed of up to 

100 degrees per second. Pan action was typically used on our testbed experiments. Both the 
tripod and the webcam were connected to the Openbrick by USB-1.1, hence both USB ports on 
an Openbrick were occupied. Additionally, the trackerpod motors drew up to 0.5 Amps from the 

port so it could post overload problem to some standard USB ports but the ports on the Openbrick 
were able to supply the necessary current. Each of the six webcams was 41 inches above the 

surface of the testbed. At that distance, a camera snap-shot would cover 24 inches X 18 inches if 
aimed vertically below camera. The robots and remote-controlled vehicles all had a printed color 

blob of 3-inch diameter on top to provide visual identifications. The blob was placed 4 inches 
from the testbed surface thus the cameras were focused to a distance of 37 inches. 

 
Figure 3.  Testbed layout 

 
The 32 calibration dots were also elevated 4 inches with metal stands so that all the color 
information were on the same plane and any image skew caused by height differences avoided. 
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Figure 3 above shows the layout of the testbed track. The two robot tracks were printed on large 
format non-reflective (180 gram) paper. We divided the 90”x60” region into 15” squares.  Each 
square represented a single field of view (FOV) that any camera was allowed to look, and they 
are numbered from (0,0) representing the bottom left FOV to (5,3) representing the top right 
FOV.  Within the testbed we wanted to accommodate as many FOVs as possible but the 
minimum size of a FOV was dictated by the sizes of the vehicles. Two robots or remote-
controlled vehicles must be able to past each other within a FOV. Besides, we had to mark each 
of the four corners of a FOV with a color blob, which would have a minimum surface area to be 
recognized by the cameras above. Fifteen-inch square was the minimum size of a FOV that we 
could design for. At this dimension we were able to carve out 16 FOVs. When these 16 FOVs 
were to be monitored by six cameras each able to pan or tilt to four positions, 8 of the FOVs 
could be monitored by two cameras. A physical configuration was thus constructed for the 
camera network to allocate sensing resources to optimize what the entire network can see.  
 
Robots and remote-controlled vehicles were only allowed to be in the white areas of the layout.  
Six cameras were positioned at each of the red squares marked with a letter, and at any given 
moment each camera was allowed to look in one of 4 FOV’s, two in the counter-clockwise 
direction and two in the clockwise direction.  For example, camera E can observe FOV’s (3,0), 
(4,0), (5,0), and (5,1).  Note that FOV (3,1) and (3,2) are areas where only remote-controlled 
vehicles were allowed to enter, and no camera is allowed to observe these no coverage FOV’s.   
 

 
Figure 4.  Second generation testbed 

 
PARC’s second generation testbed is shown in Figure 4, which also consisted of a set of 
networked sensor nodes mounted above the testbed, each controlling a pan-tilt camera (PTC).  
These nodes look directly down on a screen on which simulated images of moving vehicles are 
projected by a conference room projector. This combination of simulated data and a real sensor 
network lets us incorporate the difficult-to-simulate effects of video sensing, networking and 
limited computation, while permitting us to generate repeatable scenarios in which very large 
numbers of moving targets and distractors may behave in complex, purposeful ways, which was 
too difficult and time consuming to implement on the first testbed. The layout of the second 
generation testbed is similar to the layout of the first generation testbed.  An example simulated 
scenario is shown below. Both distractors and targets are shown as a rectangle with a pair of 
coaxial, uniquely-colored dots, with no a priori knowledge of which colors correspond to targets 
and distractors provided. Regions with buildings are impassable, while the central “crossover” 
path is inaccessible to any of the cameras.  The small red dots are solely for pan tilt camera (PTC) 
calibration. 
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Figure 5.  Example simulated scenario 

 
The sensor nodes, as before, are OpenBricks, 300 MHz x86-class (AMD Geode) tiny PCs with 
TrackerPod PTCs mounted on each. These nodes currently use wired power and networking for 
simplicity of experimentation. Since the plane that the color blobs appear is right on the screen, 
the cameras are mounted only 37 inches above, and will capture the same amount of information 
as they did in our first generation testbed. At each timestep, each PTC points at the center of one 
of 4 neighboring regions (Fields of View, or FOVs) on the testbed, with 0-2 FOVs overlapping 
between each pair of neighboring nodes. Two frames are captured at each iteration (every 2 
seconds), separated by 75 msec. The YUV4:2:0-formatted images are separated into five color 
planes in {Red, Green, Blue, Yellow, Magenta} using a radial basis function classifier in UV 
space (i.e. using only chrominance) based on five calibrated prototype colors. A simple 
connected-component blob detector finds the centroids of blobs in the image, and velocity 
estimates are made by back-differencing centroid positions of nearest neighbor blobs of the same 
color between the two frames.  
 
PARC has developed a simulator for the motion of many interacting objects according to a 
electrical particle model of interaction modified with a goal directed motion.  [Chabbra-2004] 
describes the simulator in more detail.  This simulator generated movies of the scenarios used to 
demonstrate the distributed attention system. 
 

(11.0) Benchmark scenarios and metrics 

 
The slide deck [Scenarios-2004] shows two benchmark scenarios for our distributed attention 
system.  The scenarios represent cases where our system is to detect a bully which has caused a 
commotion amongst a group of normally moving objects. 
 
Appendix II describes performance metrics which are applicable to measuring the performance of 
the distributed attention system.  They are primarily concerned with the performance of the 
inference as traded off with resource limitations and usage. 
 

(12.0) Data collection and validation 

 

PARC has collected data on the distributed attention system from the second generation testbed to 
validate that the resource allocation mechanisms do produce better performance in certain 
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regimes of sensor density and sensing coverage.  See Appendix III for details on some 
experiments showing the performance of the distributed attention system. 
 

(13.0) Whitepaper 

 

A whitepaper has been produced which outlines a possible research thrust for DARPA.  See 
Report A011. 
 

(14.0) Final report 

 
This concludes the final report on the seedling efforts. 
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Appendix I.  Implemented system architecture for the distributed 
attention testbed 

 
This appendix describes the system architecture for the current distributed attention testbed.  The 
goal of a system architecture is to divide the different functionalities of the system into as 
independent, modular pieces as possible.  Hence, the design considerations are based on defining 
boundaries that split functionality into nearly independent pieces via a well-defined interface 
between modules.  A good system architecture promotes easier future evolution since each 
module can be independently designed as long as the interfaces are respected. 
 
The sensemaking tasks currently implemented on the testbed are the following. 
1. Scan the world so as to get data about abnormally behaving objects as quickly as possible. 
2. Detect abnormally behaving objects. 
3. Track abnormally behaving objects. 
 
The main system characteristics are the following. 
1. limited sensing coverage - The sensors in the system cannot observe all phenomena in the 

world at any one time.  In particular, the six cameras of the testbed cannot take an image of 
the entire testbed. 

2. distributed system – The algorithms for running the tasks must be distributed 
implementations.  Hence, the art of designing the architecture is to modularize the 
computations involved so as to keep each computational component as independent from 
each other as possible.  However, since dependencies among components are inevitable (i.e., 
the resulting blobs from the blob detection computations are needed by the tracking 
computations), it is desirable to keep the components as loosely coupled as possible (e.g., the 
tracking computations don’t care exactly which blob detector the blob came from as long as 
some blob detector provides the data that the tracking computations require.) 
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1.  System Architecture -- Holistic View to Distributed Implementation 

Figure 6.  Overall system architecture 

 

To accomplish the tasks above with consideration of the main system characteristics described 
and to allow future expansion, we have one major division of the system architecture: the 
sensemaking part and the sensor system part. 
 
1.1  Sensemaking Part 
 
The sensemaking part is the analytical part of the system which is responsible for two major 
functionalities: 
1. interpret sensor data to form the appropriate higher-level representations reflecting the states 

of phenomena in the world and 
2. determine what sensor data would be most useful for further interpretation. 
The first functionality of the sensemaking part is embodied within the layered inference 
architecture in blue in Figure 6.  The problem of sensor data interpretation is the subject of 
traditional information processing, which includes detection, estimation, and tracking.  These 
information processing algorithms extract the desired information from the possibly noisy data in 
some optimal manner without the ability to control what data is provided.  Our system, on the 
other hand, can potentially control what data is received so that the second functionality in the 
sensemaking part is to suggest what data to actively seek, which is embodied in the data request 
generator denoted in gold in Figure 6.  This second functionality addresses the “limited sensing 
coverage” aspect of our system by allowing the current inferred state of the world to influence 
what data to collect next.  Note that this functionality implements a part of the focusing of 
attention aspect of our distributed attention system. 
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Such active sensing systems are not novel and have been reported in the literature; however, one 
additional aspect of our system is that it is a distributed system.  The design of the computations 
involved for the sensemaking tasks must be organized in a way which can tolerate the 
communication latency and unreliability of cross-node communications since sensemaking tasks 
may require real-time performance which can push the available communication bandwidth to the 
limit.  For example, limited communication bandwidth may prohibit the transfer of streaming 
video to remote nodes so that the information in the video stream must be summarized in order to 
be sent.  A closer look at the layered inference architecture in Figure 6 shows our three layered 
architecture for interpreting data.  At the bottom is the pre-attentive layer; the next is the attentive 
layer, and the highest layer is the cognitive layer.  The organizational principle for the three layers 
of processing involves two considerations: the semantics of the representations and the cross-
node communication requirements of the computations.   
 
Holistic View of the Pre-attentive Layer 

 

 
Figure 7.  Pre-attentive layer 

 

The computations in the pre-attentive layer result in representations which are semantically 
strongly related to the raw data streams collected by the sensor hardware.  In our camera testbed, 
the pre-attentive layer, shown in Figure 7, takes images captured from a camera and processes 
them through a blob detector which computes the location, velocity, and color of colored dots in a 
sequence of two images.  These blobs are then passed through a normalcy detector which tags a 
normalcy flag depending on whether the blob’s location/velocity pair is considered statistically 
rare, based on a histogram of the history of blob location/velocity detections stored in a blob 
statistics database.  In the current system, a separate learning phase for collecting blob detections 
was executed to compute the histogram stored in the blob statistics database; we imagine future 
extensions which allow this learning phase to occur online.  Furthermore, there is a suspicion 
monitor which monitors which FOV’s are probable for new abnormal behavior to emerge in the 
world.  Currently, the suspicion monitor maintains the amount of time that has elapsed since the 
last observation of each FOV in the testbed, where longer elapsed time corresponds to higher 
probability of a new abnormal behavior emerging.  The data for suspicion monitoring is the time 
that a particular FOV has been viewed by a pan-tilt camera.   
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Processing in the pre-attentive layer should require very little or no cross node communications.  
Thus, the pre-attentive layer can include processing of high data rate streams that require no cross 
node data.  For example, blob detection requires images only from the local camera sensor so no 
cross node communications are required.  Furthermore, any cross node communications should 
be relatively static in the sense that the data sources and sinks do not change rapidly.  For 
example, the suspicion monitor of a particular FOV requires information from the set of cameras 
that can view the FOV, which we assume will not change rapidly.  The ramifications of having 
none or only a few, static cross node communications is that the overhead needed to maintain the 
sources and sinks of data requires only an initial setup (footnote: This is the overhead from an 
end-to-end perspective and is true only in sensor networks with relatively stable links and nodes.  
However, even for cases where failures in links and nodes are frequent, static data sources and 
sinks are easier to maintain than dynamic ones.).  Thus, the processes in the pre-attentive layer 
share a common characteristic in regards to their distributed implementation.  Those processes 
requiring no cross node communications require only a replication of the computations onto each 
node, and those that do require data from remote nodes require only an initial set up of the data 
sources and sinks and an implementation to forward data via cross node communications as 
appropriate. 
 
 

Figure 8.  Distributed implementation of pre-attentive layer tasks 
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Distributed Implementation of the Pre-attentive Layer 

 

An example of the distributed implementation of the blob detector, normalcy detector, and 
suspicion monitor is shown in Figure 8.  The figure shows two nodes, labeled A and B, each with 
a camera, also labeled A and B.  The world is a single lane of 6 FOV’s numbered consecutively 
from left to right.  Camera A can view FOV’s 1 thru 4 while camera B can view FOV’s 3 thru 6.  
Note that both nodes include all the sensemaking modules of the pre-attentive layer (See Figure 
7).  The blob detector and normalcy detector detect blobs and calculate normalcy from their local 
camera only.  Note no communication between the blob detectors and normalcy detectors of 
nodes A and B are necessary because they do not need to share any information.  The suspicion 
monitor module has been implemented in a distributed fashion by separating which FOV regions 
the suspicion monitors on nodes A and B are to handle.  The suspicion monitor on node A is 
responsible for monitoring the suspicion in FOV’s 1, 2, and 3 while the suspicion monitor on 
node B is responsible for monitoring the suspicion in FOV’s 4, 5, and 6.  Since the camera B can 
view FOV 3, then whenever the suspicion monitor on node B notices that camera B has viewed 
FOV 3, this information needs to be sent to the suspicion monitor on node A so that the suspicion 
about FOV 3 can be updated.  This is shown graphically in Figure 8 by the green arrow coming 
out of the suspicion monitor on node B which forwards the event “FOV 3 viewed” to the 
suspicion monitor on node A.  Analogously, the suspicion monitor on node A will forward the 
event that camera A has viewed FOV 4 to the suspicion monitor on node B.  In our testbed, we 
have pre-wired which FOV’s the suspicion monitor on each node is responsible.  Future 
extensions could involve negotiations between nodes to set up this division of responsibility and 
to handle node failures. 
 
Holistic View of the Attentive Layer 

 
Figure 9.  Attentive layer 

 

The computations in the attentive layer create representations whose semantics are regarding the 
state of single, localized phenomena in the world, where the two key words are single and 
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attentive layer task since object trajectories have a clear meaning regarding the motion of a single 
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phenomenon and the sensor data required for computation is localized in time and space.  Figure 
9 shows the attentive layer sensemaking modules in the camera testbed.  The attentive layer 
consists of a tracker based on location estimates of colored blobs which have been computed by 
the pre-attentive layer.  The color of the blob represents a discriminating feature which identifies 
a particular object, so that tracking multiple objects is possible in our system as long as the color 
of the objects are distinct.  (footnote: Future work extending this testbed to a real application 
would involve developing a real discriminating feature set for identifying objects.)  A new track 
is initiated by a track initiator module for blobs that are tagged as abnormal and have a color 
which is not the color of some previously tracked object.  Thus, there is a filter module which 
determines whether to send blobs to the track initiator or to the tracker.  Once a track is initiated 
and the color of the object identified, future blobs of the object’s color will be incorporated into 
the track.  Tracking is currently implemented with a particle filter.   
 
An appropriate distributed implementation of tasks at the attentive layer is a leader-based 
approach.  That is, a single node is elected the leader which is responsible for performing all the 
processing necessary to maintain the state of the object.  This leader must also gather the 
appropriate data from sensors on remote nodes for processing.  Such a quasi-centralized scheme 
may not seem scalable; however, this leader-based implementation is scalable because the sensors 
that have the most informative data regarding the object state tend to be spatially localized.  Thus, 
by choosing the leader to be near (in terms of some notion of communication distance) the set of 
sensor nodes with good data, this leader-based implementation is scalable.  For wireless 
communications, “nearness” in communication distance is generally correlated with “nearness” in 
spatial location.  The set of sensors which have the most informative data can change over time.  
For example, as an object moves through a sensor network and assuming that the sensors which 
are near the object’s position tend to have better data, then the set of sensors with good data 
changes over time.  Thus, the leader node should change over time so that communicating the 
needed sensor data to the leader does not require communicating across an unnecessarily large 
part of the network.  In our testbed, tracking the motion of objects is a good example which is 
amenable to this leader-based distributed implementation.  By assigning a leader for each track, 
we can track multiple objects through the sensor network (as long as we do not have to deal with 
mixing identities).  Note that a node can be the leader of multiple tracks.  Cross node 
communications in the attentive layer are more dynamic involving changing data sinks (the 
leaders) and changing data sources (the spatially localized set of sensors) depending on the 
dynamics of an object’s state evolution. 
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Figure 10.  Distribute implementation of attentive layer tasks 

 

Distributed Implementation of the Attentive Layer 

 
In our camera testbed, the distributed implementation of the attentive layer is to replicate the 
modules in Figure 9onto every node of the sensor network as shown in Figure 10.  To aid this 
discussion, when we refer to a sensemaking module of a particular node, we will refer to it 
according to the identifying node letter.  For example, the filter module on node A will be 
referred to as filter module A, and the tracker module on node B will be referred to as tracker 
module B, or simply tracker B. 
 
Let us first describe tracking and later describe track initiation.  The track database of a node 
contains only the set of tracks for which this node is the leader.  For example, node A is the leader 
node of object 1, so that track database A consists of the state representation of object 1.  Node D 
is the leader of object 2, so that track database D consists of the state representation of object 2.  
All other nodes have no tracks in their track databases.  The information flowing through the 
incoming arrow of the filter module of each node is the set of local blobs computed by the local 
node’s blob detector in the pre-attentive layer.  Since the set of nodes that have good data about 
object 1 are those nodes which are near it, as indicated by the dotted lined yellow ellipse around 
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the object, node A should get red blobs from nodes B and C whenever they appear.  Tracker A 
accomplishes this by examining the current estimated position of object 1 and determining those 
sensor nodes which are close to the object.  We assume that every sensor node already has the 
needed configuration information about neighboring sensor nodes so that tracker A requires no 
additional communications to determine this set of nodes.  Then, tracker A will inform its local 
filter module A that it is interested in red blobs from nodes A, B, and C, since object 1 can be 
identified by a red blob.  Filter module A will then send a message to filter modules B and C 
asking them for any red blobs that they encounter.  When filter module A receives a red blob, it 
will send the red blob to tracker A for processing.  Note that this prevents red abnormal blobs 
from initiating a new track on node A.  When filter modules B and C receive a red blob, they will 
forward the red blob to filter module A, which will then send the red blob to tracker A.  Note that 
this prevents red abnormal blobs from initiating a new track on nodes B and C as well.  As data is 
collected, the best position estimate of object 1 may approach another node, say node B.  At this 
point, tracker A will decide to make node B the leader of object 1.  This requires, retracting 
interest of red blobs by filter module A and sending the state representation of object 1 to node B.  
When node B receives the track, it can then set up the appropriate queries to the set of nodes near 
object 1, and tracking of object 1 can continue in like manner as before.  This leader-based 
implementation is on a per-track basis so that node D behaves analogously for object 2.  
Furthermore, there is no restriction that a sensor node can be the leader for any one track.  The 
above implementation works for multiple tracks in the track database. 
 
Now, let us describe track initiation.  Say a blue target moving abnormally comes into range of 
sensor nodes E and F.  Filter modules E and F may encounter a blue blob which is tagged 
abnormal by their respective normalcy detector in the pre-attentive layer.  Since neither filter 
modules E and F have been notified of a blue object that has already been tracked in the world, 
they will send their local blue blobs to their local track initiators.  If track initiators E and F both 
initiate a track for blue blobs, then we encounter a situation where there are duplicate tracks in the 
sensor network for the same object.  Thus, track initiation requires a consolidation scheme so that 
the initiation of duplicate tracks can be prevented.  Our solution is for track initiators E and F to 
send out a message indicating that they have noticed an abnormal blue blob.  After a short time, 
the track initiators then know the set of nodes which have also observed an abnormal blue blob.  
Then, the track initiator which is on the sensor node that is closest to the set of abnormal blue 
blobs will be the one to actually initiate a new track.  If there are any ties, then these can be 
broken via an ordering on the sensor node id, which is assumed to be unique.  Note that this 
consolidation scheme requires that each sensor node know about its neighboring sensor nodes, 
which we assume was the case.  This concludes the distributed implementation of the attentive 
layer tasks. 
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Holistic View of the Cognitive Layer 
 
The computations in the cognitive layer create representations which can describe the behavior of 
groups of objects or phenomena which are not localized in the world.  These sensemaking tasks 
potentially require information from sensor nodes which can be widely spaced apart.  Thus, a 
leader-based distributed implementation may not be appropriate for tasks at this layer.  What 
kinds of distributed implementations are suitable is a topic of future research which will require 
some example tasks to drive this exploration.  The camera testbed currently does not implement 
any cognitive layer tasks. 
 
Attention Mechanism in the Sensemaking Part 
 
We will describe which pieces of the sensemaking part of the architecture involve implementing 
an attention mechanism.  We will base this discussion on the holistic view of the system because 
the distributed view of the system includes extra issues which tend to confuse what parts of the 
architecture were designed to implement a focus of attention mechanism and what parts of the 
architecture was designed to handle the constraints of a distributed system.  The attention 
mechanism involves two aspects on the sensemaking part.  The first aspect is to limit what 
processing occurs.   
 
The pre-attentive layer computes normalcy for all blobs that are detected by the blob detector.  
When these blobs are passed up to the attentive layer, they go through a filter which either (1) 
ignores them, (2) sends them to the track initiator, or (3) sends them to the tracker for updating a 
known track.  Initially, the filter ignores all blobs that are not considered abnormal, and all blobs 
that are tagged to be abnormal are sent to the track initiator.  After a new track has been created 
and sent to the tracker, the tracker will send a control message (along the red arrow in Figure 11) 
to the filter indicating what color blobs to send to the tracker in the future regardless of whether 
the blob is abnormal or not.  In this way, future abnormal blobs of this track’s color will not 
instantiate a duplicate track.  Furthermore, if a track ever terminates, then the tracker can indicate 
to the filter that blobs of the terminated track’s color should no longer be sent to the tracker.  By 
controlling what data is sent where and since each module performs processing only when data is 
sent to it, the system is using processing resources only when needed.  Note that the pre-attentive 
layer always processes images into blobs and runs the normalcy detector.  There must be some 
computation which must always be executed to start the whole sensemaking process.  Thus, it is 
desirable to make the computations at the lowest layers as inexpensive as possible, both in terms 
of processing and communication resource expenditure. 
 
The second aspect is to suggest to the sensor system part what data should be collected by the 
sensors.  The suspicion monitor at the pre-attentive layer sends data requests to view certain 
regions of the world with a priority that is proportional to the amount of time that has elapsed 
since the last camera observation.  The tracker sends data requests to view each track that it is 
tracking.  The priority for viewing a certain region depends on the importance of viewing the 
object and the probability of finding the object in the region. 
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Figure 11.  The pre-attentive and attentive layers of processing stacked up 

 

1.2  Sensor System Part 
 
The sensor system part is responsible for the following two functionalities: 

1. resolving data requests and mapping requests to the appropriate sensors on the 
appropriate nodes and 

2. maintaining an awareness of the set of sensor nodes. 
The first functionality is embodied in the sensing resource allocation module of the system as 
shown in Figure 6.  Our pan-tilt camera network has constraints on what set of regions can be 
viewed at any one time due to the limited number of regions each camera may view.  Since it is 
possible that the data requests from the sensemaking part of the system may be a set of requests 
which cannot all be handled, the sensing resource allocation part of the system is needed to 
decide which requests to honor and which to ignore.  In the camera testbed, the tracker requests 
for image data from those regions of the testbed where there is a high probability of viewing one 
of its tracks.  Furthermore, the suspicion monitor requests for cameras to view certain regions 
with different priority.  Thus, the sensing resource allocator chooses the best set of regions for the 
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cameras to view given the data requests from the sensemaking part of the system.  The details of 
the resource allocation module are described in a subsection below. 
 
In order to make a sensing resource allocation decision, not only must the set of data requests be 
provided but the set of available sensing resources must also be known.  If the availability of 
sensor resources is dynamic, like if nodes can fail or new nodes can be added, then maintaining 
knowledge of the available resources is important.  This second functionality is embodied in the 
resource awareness module shown in Figure 6.  In the current camera testbed, when a sensor node 
is turned on, it will announce its arrival to the other nodes in the network.  The nodes of the 
network will then exchange information about the set of regions that their cameras can view.  The 
extent of this exchange of information can vary depending on the needs of the application, which 
has implications on the scalability of this approach. 
 
Sensing resource allocation module  

 
We will describe the sensing resource allocation module in detail in this subsection.  In our 
particular camera testbed, the resource allocation module is responsible for pointing the pan-tilt 
cameras (PTC’s) to view the set of FOV’s which are considered the highest priority according to 
the data requests generated by the sensemaking tasks.  The feasible set of FOV’s which can be 
viewed is constrained by the limited set of FOV’s each camera can view. 
 
The suspicion monitor and tracker communicate their priorities for viewing particular FOV’s in 
the testbed by assigning utility values to these data requests.  The higher the utility value, the 
higher the priority for viewing the FOV.  For example, the suspicion monitor will request to view 
an FOV with a utility equal to a constant multiplied by the elapsed time since any camera had last 
viewed the FOV.  Thus, those FOV’s which have not been viewed in a long time get larger 
utilities.  To monitor a track and remembering that we have a particle representation of the 
location of the track, the utility assigned to view a particular FOV by this track is equal to a 
constant multiplied by the number of particles present in the FOV.  Our particle filter 
implementation of the track state varies the number of particles used in proportion with the size of 
the uncertainty region of the track.  Thus, targets with greater uncertainty tend to have higher 
priority than those with less uncertainty, which seems reasonable if we are to maintain an 
awareness of all known tracks.  The total utility of viewing an FOV is defined to be the sum of 
the utilities assigned by each track and the suspicion monitor.  Although we can combine the 
individual utilities in ways other than addition, we will see that addition will be amenable to a 
distributed solution using a variant of the sum-product algorithm on factor graphs. 
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Problem Statement 
Our resource allocation problem for steering cameras is posed as a utility maximization problem.  

Let S  be the set of all viewable FOV’s in the world, and let SS i ⊂  be the subset of FOV’s 

viewable by camera Ii ∈ , where { }nI ,,1K=  is an index set of all n  cameras in the system.  

Let ℜ→Sg :  be the global utility value assigned to each FOV Ss ∈ .  Then, we wish to choose an 

FOV assignment ii Ss ∈ˆ  for each camera Ii ∈ , so that we maximize 

∑
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.  Note that if multiple cameras are assigned to view the same FOV, then the 
utility value for that FOV is not counted multiple times. 
 
Since our system is distributed, we need a distributed method for solving, at least near optimally, 
the maximization problem above.  Although we could have posed this problem as an auction, we 
choose an approach based on factor graphs, which can be generalized to handling combinatorial 
auctions. We use the max-sum algorithm, a variant of the sum-product algorithm, to 
approximately compute the maximizing assignment of cameras to FOVs.  This transformation 
allows us to derive a distributed algorithm for resource allocation. 
 

We wish to rewrite the function h  above explicitly as a sum of the individual utility values 
assigned by each inference task.  To facilitate explanation, we will use the example of Figure 12. 
The example is a world consisting of four FOV’s with three cameras, where camera 1 can view 
either FOV 1 or FOV 2, camera 2 can view either FOV 2 or FOV 3, and camera 3 can view either 

FOV 3 or FOV 4.  Let { }4,,1K=J  be the index set of individual inference tasks assigning utility 
values to the FOV’s, which in this example are: (1)  the suspicion monitor for FOV 1 which 
currently shows a suspicion level of 2.0, (2) the suspicion monitor for FOV 2 showing 1.0, (3) the 
suspicion monitor for FOV 3 showing 1.5, (4) the suspicion monitor for FOV 4 showing 4.0, and 
(5) the track for target 1 with gray particles representing possible locations of the target. 

 

 
Figure 12.  Resource allocation example 

 
Each of these inference tasks assigns utility values for the FOV’s and hence, utility values for 

certain assignments of cameras to FOV’s.  Let { }2,11 ∈s  be the FOV (either FOV 1 or FOV 2) that 

camera 1 can view, { }3,22 ∈s  be the FOV (either FOV 2 or FOV 3) that camera 2 can view, and 
{ }4,33 ∈s  be the FOV (either FOV 3 or FOV 4) that camera 3 can view.  The following functions 
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1=iif  are the utility values contributed by each individual inference task i  depending on the FOV 
assigned to the cameras. 

1. For the suspicion monitor task of FOV 1, since only camera 1 can view FOV 1, 1f  is a 

function of only 1s .  Letting the utility for viewing FOV 1 be the current suspicion level, we 
have 
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2. For the suspicion monitor task of FOV 2, since FOV 2 can be viewed by both camera 1 and 

camera 2, the utility function 2f  is dependent on both 1s  and 2s .  We have 
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for the utility contributed by this task.  Note that we do not double-count the utility if both camera 
1 and camera 2 view FOV 2. 
3. For the suspicion monitor task of FOV 3, since FOV 3 can be viewed by both camera 2 and 

camera 3, we have 
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4. For the suspicion monitor task of FOV 4, since only camera 3 can view FOV 4, we have 
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5. For the tracking task, we first look for the set of cameras that can view any particle of the 

track so that the function 4f  is a function of both 1s  and 2s .  For this example, assigning a 
utility value of 1 to every particle that is viewed gives us 
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Thus, we have rewritten the global utility function h  as 
),()(),(),()( 2153432321211 ssfsfssfssfsf ++++  . 

Note that h  is a function of three variables, but it can be written as the sum of functions of less 
than three variables each.  It is this special structure that factor graphs can take advantage of for 
efficient computation.  For our particular resource allocation problem, we are interested in 
computing 

),()(),(),()(maxarg 2153432321211,, 321
ssfsfssfssfsfsss ++++

. 

The graphical picture of this “factorization” of h  is shown in Figure 13. 

 
Figure 13.  The factor graph 
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the set of variables that it depends, capturing the “factorized” form of the overall function h  that 
it represents.  The max-sum algorithm is an iterative message passing algorithm where messages 
are passed along the edges of the factor graph and summary operations are computed at the 
function and variable nodes of the graph.  For factor graphs that contain no cycles, the result of 
these iterations is the maximizing variable assignment.  For factor graphs with cycles, there are 
few guarantees about the result that are known theoretically , although in practice, the results 
have been promising.  
 
For our distributed attention system, it is important that we have a distributed algorithm for 

performing this resource allocation.  Recall that each inference task generates a utility function if  
which is a function of the FOV assignments of all cameras which can provide data for this 

inference task.  Our idea is for each inference task to communicate the utility function if  to a 
local set of camera nodes.  Then, each camera can execute the max-sum algorithm and point itself 
to what it believes is the best direction.  To be globally consistent, each inference task would have 
to communicate its utility function to all cameras in the entire network.  However, since it is only 
those cameras which are near each other that really must negotiate and less so when a camera is 
very far away, the utility function for each inference task need only be communicated to a local 
neighborhood of cameras in practice. 

 

2  System Architecture Design Considerations 
 
This section describes the implications of drawing the boundary between the sensemaking part 
and the sensor system part as shown in Figure 6. 
 
One reason is to separate the expertise needed to develop such a multi-disciplinary system.  The 
sensemaking part involves expertise in signal processing, detection and estimation theory, 
recursive estimation, and high-level AI.  On a sensor network, this part is the application part of 
the system, and the information processing algorithms are meant to be application specific.  The 
sensor system part involves expertise in distributed systems, embedded systems, and real-time 
scheduling and allocation.  This part is meant to be application generic and provides an 
abstraction of the machinery below on top of which an information processing application can be 
developed. 
 
Another reason is the design modularity that this boundary enables.  By keeping resource 
allocation and resource awareness separate from the sensemaking algorithms, the sensemaking 
algorithm implementations do not need to be modified if sensor nodes fail or new sensor nodes 
are added.  A change in the particular networking infrastructure, either wireless or wired, does not 
require a modification of the sensemaking code.  This boundary makes the sensemaking 
algorithms generic over sensor network hardware configurations.  However, this modularity 
comes at the cost of disallowing sensemaking algorithms to have direct control over how 
particular sensing devices are used.  Such capabilities could be useful for sensemaking algorithms 
which are resource aware, referring to those algorithms that adapt to the available resources.  We 
believe a middle ground between allowing sensemaking algorithms to have complete access to 
the sensing devices versus enforcing a strict boundary, where sensemaking algorithms have no 
control of the sensing devices used, is to develop a more detailed data request description so that 
the sensemaking algorithms can have some control about their preferences in sensing devices 
used coupled with a feedback loop from the sensing resource allocator which provides high-level 
descriptions of the available sensing devices, which could be utilized by resource aware 
sensemaking algorithms. 
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 Appendix II.  Performance metrics 

 
We identified a few metrics for performance evaluation of distributed attention systems. The 
metrics can be roughly categorized into two classes: one for evaluating sensing and tracking 
qualities of the attentional system, and the other for evaluating the quality of distributed system 
engineering, such as reliability, resource allocation efficiency etc.   
 

Sensing and tracking metrics 

 
The sensing and tracking metrics we identified includes: 

• Detection 
o Time-to-detection: it measures the time it takes from when the ground truth of 

when an anomaly first appears in the world to the time it takes for the system to 
sense it.  This metric isolates the particular choice of peripheral awareness 
monitoring from the detection algorithm.  

o False alarm rate and missed detection rate: these are standard performance 
metrics tooted in estimation theory. There is a tradeoff between the two metrics, 
often viewed in a ROC (Receiver Operating Characteristic) curve, which is a 
graph plotting the detection probability versus the probability of false alarm.  See 
[Shanmugan-1988, pg.352] for a reference. 

• Classification 
o Misclassification rate:  it measures the accuracy of the classification method 

used with respect to specific application scenarios.  

• Tracking 
o Track coverage: this measures the percentage of time that a track is covered by 

any camera.  To be objective, the value of this metric should be conditioned on 
available resources, such as camera density.   

o Track loss rate: this measures the percentage of established tracks that gets lost.    
o Track accuracy: this measures the difference between the actual trace and the 

computed trace of a track.   
 
Based on these metrics, inference algorithms can be optimized to achieve good performance. For 
example, various estimation algorithms, e.g., Neuman-Pearson detection, Bayesian estimation, 
and minimax estimation, have been proposed to match different optimality criteria. For most 
practical inference problems, designing a suitable inference algorithm is non-trivial and an active 
field of research. 
 

System engineering metrics 

 
In distributed attention systems, there is the additional tradeoff between multiple concurrent 
inference tasks due to their competition for resources. For example, Figure 14 illustrates the 
tradeoff within a system with a detection task and a tracking task. As the resource allocation 
scheme grants tracking more resources (moving down the curve),   tracking quality (e.g., average 
variance) is improved, but the detection quality (false alarm or missed detection rate) deteriorates. 
A good resource allocation scheme should try to push the curve, as indicated by the arrows in 
Figure 14, in order to achieve an optimal balance between the tasks.   
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Figure 14.  Tradeoff between detection and tracking with contention for fixed resources 

 
Furthermore, under resource contention, instead of using performance metrics for each individual 
task, for convenience one may use summarized metrics based on application requirements. For 
example,  

• To test the robustness of tracking against clutters, the performance metric can be the 
number of distractors that the system can tolerate while maintaining tracking quality 
above a given level.  As shown in Figure 15, given fixed resource, a good engineering 
design should try to push the Quality-vs-distractor curve upward.   

 
Figure 15.  Engineering against the number of distractors 

 
• In a system with real-time requirements, instead of using detection quality such as the 

false alarm or missed detection rate, one may use time-to-detection, which measures the 
amount of time that an abnormal target remains undetected since its first appearance. It 
turns out that time-to-detection distribution is a summarization of the detailed detection 
metrics. Similarly, we can measure time-to-classification, or generally, time that it takes 
to fulfill a task or verify/disprove a hypotheses.  

 
To evaluate a resource allocation scheme, we can compare it against a few benchmarks:  

- Round robin allocation, where sensing resources are granted to tasks in turn.  
- Random allocation: sensing resources are allocated randomly according to some 

distribution. This scheme may in fact be optimal in special cases. For example, if the 
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abnormalities pop up at random locations at random times, and there is no correlation, 
random allocation is the best thing to do.  

- Optimal allocation: This is the computationally expensive centralized allocation “oracle” 
scheme. Comparison with this optimal allocation shows how much performance is 
sacrificed by restraining the system to local communication.    

 
Finally, the robustness of the system against component failures could be measured by the 
quantitative changes of the sensing and tracking metrics of the system when some 
cameras/sensors are shutdown.  A good system should exhibit graceful degradation of the sensing 
and tracking qualities. 
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Appendix III.  Experiments 

 
In this appendix, we show experimental simulation results which demonstrate that our distributed 
attention system can be tuned to trade off detection of new abnormal behavior against persistent 
tracking of abnormal targets.  We also compare our system to a baseline system where cameras 
are steered randomly. 
 
Description 
 
To measure how well emergent abnormal behavior is detected, we consider the detection latency, 
the interval of time (in units of sensing cycles) between the emergence of an abnormal behavior 
and its detection.  To measure the track quality, we consider track coverage, the average 
percentage of the time a track is viewed by any camera.  An ideal system is one which both 
minimizes detection latency and maximizes track coverage. 
 
In our experiment, abnormal behaviors emerge according to a Poisson arrival process, and are 
then randomly positioned on any viewable part of the testbed.  The detection latency is 
independent of the arrival rate since processing abnormal behavior is modeled as having 
negligible cost.  We also have 0-6 targets moving at various speeds around the testbed in either a 
clockwise or counterclockwise direction.  These targets are hard-wired to be abnormal from the 
start, while instantiation of new tracks is deactivated to allow us to measure the detection latency 
for various numbers of tracks.  We then collect the detection latency and the track coverage as we 
vary the relative track utility, the ratio of track utility to suspicion utility and the number of 
tracked targets. 
 
Detection latency CDF 
 
Figure 16 and Figure 17 show the empirical detection latency cumulative distribution function 
(CDF) for the random camera allocation (dotted line), along with the CDFs (solid lines) for the 
utility-based resource allocation scheme described in Appendix I for up to 6 targets.  As expected, 
when there are more targets being tracked by the system, the detection latency CDF shifts 
downward and to the right, meaning detection latency is getting longer.  When the relative track 
utility is low as in Figure 16, added tracking tasks have less effect on the detection latency than 
when the relative track utility is high, as in Figure 17.  When the relative tracking utility is high 
and a large number of vehicles are being tracked, the detection latency can be much worse than 
the randomly allocated case; however, this cost is traded off with better track coverage as we 
shall explain next. 
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Figure 16.  Detection latency (low track utility) 
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Figure 17.  Detection latency (high track utility) 

  
Tradeoff between mean detection time and track coverage 
 
In Figure 18, we vary the relative track utility to show the tradeoff between track coverage and 
detection latency for various numbers of targets. When the relative track utility is small, then 
regardless of the number of tracks, the system has a mean detection time of around 1.5 cycles and 
track coverage slightly above 40%.  As we increase the relative track utility, the track coverage 
increases at the cost of a longer mean detection time.  As more tracks are added to the system, 
camera resources become scarcer, increasing the impact on detection time.  Note that with one or 
two tracking tasks in the system, camera resources are sufficiently available that the impact on the 
mean detection latency is negligible. For comparison, the randomly allocated system, denoted by 
the stars, has a mean detection time of around 2.5 cycles and track coverage around 35% 
regardless of the number of tracks. This demonstrates the efficiency of the resource allocation 
scheme in balancing competing needs of the system. 
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Figure 18.  Trading off detection time vs. coverage 

 
 

 




